Recent Advances in the Direct Nucleophilic Substitution of Allylic Alcohols through SN1-Type Reactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruthenium catalysts for selective nucleophilic allylic substitution*

Recent developments in the chemistry of η3-allylruthenium(IV) complexes are due to their straightforward synthesis resulting from oxidative addition of allylic substrates to a ruthenium(II) center. Subsequent reaction with a nucleophile is the basis of their involvement in the catalytic allylic substitution reaction. We focus here on ruthenium-catalyzed substitution of allylic substrates by C-,...

متن کامل

Ruthenium-catalyzed regio- and enantioselective allylic substitution with water: direct synthesis of chiral allylic alcohols.

Enantioselective allylic substitution catalyzed by transitionmetal complexes is an important process in organic synthesis. For many years, mainly palladium complexes that contain chiral ligands have been employed as efficient catalysts in these reactions. Recent studies have demonstrated that chiral catalysts based on other transition metals show different regioselectivity in the synthesis of b...

متن کامل

Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes

Classical methods for achieving nucleophilic substitutions of alkyl electrophiles (SN1 and SN2) have limited scope and are not generally amenable to enantioselective variants that employ readily available racemic electrophiles. Radical-based pathways catalyzed by chiral transition-metal complexes provide an attractive approach to addressing these limitations.

متن کامل

Nucleophilic identity substitution reactions. The reaction between water and protonated alcohols.

The potential energy surfaces for the reaction between H2O and the protonated alcohols MeOH2+, EtOH2+, PriOH2+, and Bu(t)OH2+ have been explored by means of high level ab initio theoretical methods. Both nucleophilic substitution (SN2) and elimination (E2) pathways have been investigated. Front side (SNF) and the familiar back side (SNB) Walden inversion attack of the nucleophile have been foun...

متن کامل

Nucleophilic substitution reactions of pyranose polytosylates.

The 2,3,4-tri-toluenesulfonate ester derivatives of the methyl pyranosides of l-arabinose, d-ribose, d-lyxose, and d-xylose have been prepared, and their substitution reactions with various nucleophiles have been examined. For arabinose, xylose, and ribose, highly regioselective monosubstitutions were observed with benzoate, nitrite, and azide anions. These reactions have led to short and simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Synthesis

سال: 2013

ISSN: 0039-7881,1437-210X

DOI: 10.1055/s-0033-1340316